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Abstract 
 
The hybrid Cartesian/immersed boundary method is applied to fluid-structure interaction of a moving flexible foil. A 

new algorithm is suggested to classify immersed boundary nodes based on edges crossing a boundary. Velocity vectors 
are reconstructed at the immersed boundary nodes by using the interpolation along a local normal line to the boundary. 
For eliminating pressure reconstruction, the hybrid staggered/non-staggered grid method is adapted. The deformation 
of an elastic body is modeled based on dynamic thin-plate theory. To validate the developed code first, free rotation of 
a foil in a channel flow is simulated and the computed angular motion is compared with other computational results. 
The code is then applied to the fluid-structure interaction of a moving flexible foil which undergoes large deformation 
due to the fluid loading caused by horizontal sinusoidal motion. It has been shown that the moving flexible foil can 
generate much larger vertical force than the corresponding rigid foil and the vertical force can be attributed to the 
downward fluid jet due to the alternating tail deflection.  

 
Keywords: Dynamic thin-plate theory; Fluid-structure interaction; Hybrid Cartesian/immersed boundary method; Hybrid stag-

gered/non-staggered grid  
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1. Introduction 

There is growing interest of the dynamic interac-
tion of a flexible body with a neighboring fluid. For 
many applications, a soft material is used because of 
its required mechanical properties such as low density, 
durability or high acoustic damping. However, the 
flexibility of a body may also improve its perform-
ance according to circumstances. For the micro-
aviation vehicle (MAV), it was reported that the 
flexibility of a flapping foil increases its aerodynamic 
efficiency [1-2]. 

In point of view of computational fluid dynamics, 
the main difficulty of the dynamic fluid-structure 
interaction is related to the continual deformation of a 

fluid domain. Although many researchers have sug-
gested a wide variety of numerical schemes to handle 
the deforming boundary, the problem is still challeng-
ing. The numerical schemes to treat the deforming 
boundary can be categorized into two classes: bound-
ary conforming and non-boundary conforming. The 
arbitrary Lagrangian-Eulerian method is a typical 
example of the boundary conforming method [3-4]. 
Since the grid is always adapted to an instantaneous 
boundary, the clustering of a grid can be controlled to 
resolve the variation of dependent variables within a 
boundary layer. However, the quality of the deform-
ing grid may cause difficulties for arbitrarily large 
deformations. In addition, the tiny irregularity intro-
duced in the deforming boundary may cause more 
severe problems when numerical cells of high aspect 
ratio are used near the body boundary. 

Due to their inherent versatility, the non-boundary 
conforming methods attract increasing attention in 
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connection with a complicated boundary. Many re-
searchers adapted the immersed boundary method to 
handle deforming or moving boundaries [5-7]. For 
the immersed boundary method, the smoothed delta 
function is introduced to distribute the forcing over a 
few cells near the body boundary. This forcing distri-
bution increases the spatial resolution requirements 
according to the configuration of the boundary, for 
instance a trailing edge of a foil. To maintain a sharp 
interface, several methods have been developed in-
cluding the immersed interface method [8] and the 
Cartesian method [9]. 

Recently, Sotiropoulos and his co-workers sug-
gested the hybrid Cartesian/immersed boundary 
method [10-12]. This method can handle arbitrarily 
large deformations of a zero-thickness body. In this 
method, the immersed boundary nodes are distributed 
inside of a fluid domain and velocity vectors are re-
constructed at those immersed boundary nodes to 
provide boundary conditions for the discretized flow 
problem. To eliminate pressure reconstruction at the 
immersed boundary nodes, the hybrid staggered/non-
staggered grid method has been suggested. Shin et al. 
[13] suggested a new criterion to classify the nodes so 
that the velocity reconstruction at the immersed 
boundary nodes makes the discretized flow problem 
well-posed for the solver based on the hybrid stag-
gered/non-staggered grid. 

In this study, the hybrid Cartesian/immersed 
boundary method is expanded to the fluid-structure 
interaction where dynamic deformation of an elastic 
body should be calculated based on the fluid loading 
caused by arbitrary body motion. A procedure is sug-
gested to conclude the node classification without any 
checking algorithm for nodes outside of a fluid do-
main. In section 2, the details of the flow solver based 
on the hybrid staggered/non-staggered grid are ex-
plained. For the validation of the developed code, the 
motion of a foil which is free to rotate about a fixed 
point in a channel flow is simulated and the present 
results are compared with other computations in sec-
tion 3. The code is applied to the fluid-structure inter-
action of a moving flexible foil in section 4. In section 
5, the concluding remarks are provided. 
 
2. Flow solver using the hybrid Cartesian/im-

mersed boundary method 

The governing equations are the incompressible 
unsteady Navier-Stokes equations. The deforming 

interface is discretized by a set of the Lagrangian 
control points distributed on the boundary. The posi-
tion and velocity vectors at the Lagrangian control 
points provide the boundary conditions for the flow 
solver. The hybrid Cartesian/immersed boundary 
method is used based on the hybrid staggered/non-
staggered grid so that the boundary condition for the 
pressure is not required explicitly. For the incom-
pressibility condition, the artificial compressibility is 
introduced with respect to the pseudotime. 

 
2.1 Categorization of nodes based on the edges 

crossing a boundary 

In the hybrid Cartesian/immersed boundary method, 
the velocity vectors are reconstructed at the immersed 
boundary nodes which are distributed inside of a fluid 
domain near an interface. The distribution of im-
mersed boundary nodes should be appropriate to en-
sure that the reconstruction of velocity vectors at the 
immersed boundary nodes makes the discretized 
problem well-posed. In this study, a node is catego-
rized as an immersed boundary node if the node is 
included in the fluid domain and it is connected to an 
edge crossing the boundary. If a node is not an im-
mersed boundary node and it is inside of the fluid 
domain, then the node is classified as a fluid node. 
This criterion guarantees there is no fluid node con-
nected to a solid node which is outside of the fluid 
domain. This property is important to avoid using 
dependent variables which are not stored near the 
boundary as explained later. 

Gilmanov et al. [10] suggested identifying a node 
as an immersed boundary node if the node is inside of 
a fluid domain and it is connected to a solid node. 
This original criterion guarantees that no fluid node is 
connected to a solid node by an edge. However, this 
criterion cannot handle a thin body. Gilmanov and 
Sotiropoulos [11] modified the criterion so that the 
immersed boundary nodes are identified based on the 
distances from the boundary. Even though the modi-
fied criterion can be applicable to a zero-thickness 
body, there is an ambiguity in the distance margin to 
guarantee that no fluid node is connected to a solid 
node, especially for the case where the grid spacing is 
varied along the boundary. The present criterion can 
handle a zero-thickness body without any additional 
treatment because the edges crossing a boundary can 
be identified clearly regardless of thickness of a body. 
In addition, it is guaranteed by the criterion for the  
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immersed boundary node that there is no fluid node 
connected to a solid node by an edge. 

Fig. 1 shows an example of identified immersed 
boundary nodes based on the present criterion. Using 
the present criterion, the categorization of nodes can 
be concluded without any checking procedure about 
whether a node is included in a fluid domain or not. 
Initially, every node is assumed as a fluid node. For 
each line segment connecting two neighboring La-
grangian control points, all edges of a background 
Cartesian grid are checked regarding whether they 
cross the given line segment. If an edge crosses the 
line segment on the boundary, two nodes of the edge 
are inspected. According to the normal vector of the 
line segment, each node should be classified as an 
immersed boundary node or a solid node. However, 
for the case where the node is presumed to be a solid 
node based on the given line segment, it should be 
checked whether the node has been identified already 
as an immersed boundary node based on other line 
segments. If the node is identified as an immersed 
boundary node based on one line segment and at the 
same time it is presumed to be a solid node based on 
other line segment, it implies that the thickness of the 
body is less than the local grid spacing and the node 
should be an immersed boundary node. Finally, the 
categorization procedure is concluded by identifying 
additional solid node, which is not changed from a 
fluid node to a solid node but it is connected to a solid 
node by an edge. 
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Fig. 1. Node classification based on edges crossing the 
boundary. Lagrangian control points, diamonds; immersed 
boundary nodes, circles; solid nodes, crosses. 
 

 

 
2.2 Velocity reconstruction at an immersed bound-

ary node 

The essential idea of the hybrid Carte-
sian/immersed boundary method is the reconstruction 
of a velocity vector at an immersed boundary node 
based on the interpolation along a local normal line to 
a boundary. Fig. 2 shows the velocity reconstruction 
at immersed boundary nodes near a sharp corner. For 
every immersed boundary node, a line is assigned that 
passes the given immersed boundary node jIB  and 
intersects the boundary at jS  orthogonally. If the 
orthogonal line cannot be defined for the given im-
mersed boundary node due to a sharp convex corner, 
then a line connecting the given immersed boundary 
node and the closest point on the boundary replaces 
the orthogonal line. Once the interpolation direction is 
selected, the line is extended from the immersed 
boundary node jIB  to a point jE  on an internal 
edge of the background Cartesian grid. 

At the point jS  on the boundary, the velocity vec-
tor is determined based on the velocity vectors pre-
scribed at two neighboring Lagrangian control points 
at given physical time step. At the other end point 

jE  of the interpolation line, the velocity vector is 
estimated based on the intermediate velocity vectors 
at both nodes of the edge, 1 jN  and 2 jN  which are 
updated during the pseudotime iteration for the in-
compressibility condition. In this study, a linear varia-
tion of the velocity vector along the internal edge is 
assumed: 
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Ej

SjSk

N1j N2j

 
 
Fig. 2. Velocity reconstruction at an immersed boundary 
node based on the interpolation along a local normal line to 
the boundary. 
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where 
j
l

Eφ  is the estimated velocity component at 
the end point jE  of the interpolation line at the l th 
pseudotime step, 

1 j jN Ed −  is the distance from the 
node 1 jN  to the point jE  and 

1 j
l

Nφ  is the inter-
mediate velocity component at the node 1 jN  during 
the pseudotime iteration. The velocity components at 
given immersed boundary node are estimated based 
on the distances from the immersed boundary node 

jIB  to the end points jS  and jE  of the interpola-
tion line. In this study a linear variation of the velocity 
vector is assumed near the immersed boundary node 
along the interpolation line: 
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In Eq. (2), the velocity vector is unchanged at the 

point jS  on the boundary during one physical time 
step, but the velocity vector reconstructed at the im-
mersed boundary node should be updated as the 
pseudotime iteration marches according to the up-
dated velocity vector at the point jE  on the internal 
edge. 

 
2.3 Incompressible flow solver based on the hybrid 

staggered/non-staggered grid 

The use of the non-staggered grid makes the veloc-
ity reconstruction procedure simple. However, pres-
sure is required at the immersed boundary node for 
the flow solver based on the non-staggered grid. 
Compared with the reconstruction of velocity, the 
reconstruction of pressure at the immersed boundary 
node may cause difficulties. Near the deforming 
boundary, the pressure field of the incompressible 
flow may change abruptly. In addition, only the ap-
proximation of normal derivative of pressure is avail-
able on the boundary, whereas the Dirichlet-type 
boundary condition is specified for the velocity field. 
Although additional interpolations are required be-
tween dependent variables of the two grids, the hy-
brid staggered/non-staggered grid method provides 
important advantages resulting from eliminating the 
reconstruction of pressure at the immersed boundary 
nodes in the hybrid Cartesian/immersed boundary 

method. 
Fig. 3 shows the arrangement of dependent vari-

ables for the hybrid staggered/non-staggered grid 
method near a sharp body end. At the immersed 
boundary nodes (open circles), the non-staggered 
velocity components are reconstructed. For the fluid 
nodes (filled circles), the pressure and non-staggered 
velocity components are stored. At a mid-point of an 
edge connecting an immersed boundary node and a 
fluid node (open triangle), the staggered velocity 
component in the direction of the edge is interpolated 
based on the velocity components of the two nodes. 
At a mid-point of an edge connecting two fluid nodes 
(filled triangle), the staggered velocity component is 
stored. 

At every fluid node, the convection and diffusion 
terms of x - and y -momentum equations are com-
puted. The convection term is discretized based on 
the second-order upwind biased scheme. For the case 
where the velocity component at a solid node is re-
quired, the second-order scheme is replaced with the 
first-order upwind scheme to reduce the stencil. How-
ever, Gilmanov et al. [10] showed that this approxi-
mation near the boundary does not degrade the sec-
ond-order accuracy of the scheme in space based on 
the error behavior with respect to grid spacing in the 
log-log plot. To explain this behavior, it is pointed out 
that the truncation error of the first-order upwind 
scheme is proportional to the second-order spatial 
derivative and the linear variation of the velocity is 
assumed near an immersed boundary node. It can be 
easily confirmed that the convection and diffusion 
terms can be calculated at every fluid node based on 
well-defined velocity vectors, provided that there is 
no fluid node which is connected to a solid node by 

 

 
 
Fig. 3. Arrangement of the dependent variables for the hybrid 
staggered/non-staggered grid method near the boundary. 
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an edge. 
To calculate the staggered velocity components at 

mid-points of edges connecting two fluid nodes 
(filled triangles), the sums of convection and diffu-
sion terms are interpolated based on those at two fluid 
nodes of the edges: 
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where XCD  and YCD  are the sums of the convec-
tion and diffusion terms of the x - and y -
momentum equations, respectively. The pressure 
gradient is calculated based on the pressure at two 
fluid nodes of the edge. 

To satisfy the incompressibility condition, the arti-
ficial compressibility is introduced with respect to the 
pseudotime within every physical time step: 
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where β  is the artificial compressibility parameter 
and τ∆  is the pseudotime step size. The superscript 
( n +1, l ) indicates the l th pseudotime iteration 
within the ( n +1)th physical time step. For the physi-
cal time marching, the three-point second-order 
backward difference formula is used: 
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After the staggered velocity components are com-

puted at mid-points of the edges connecting two fluid 
nodes, the non-staggered velocity components at the 
fluid nodes are interpolated based on the neighboring 
staggered velocity components. For every physical 
time step, the position and velocity vectors of the 
Lagrangian control points are updated. Based on the 
updated position vectors of the Lagrangian control 
points, the nodes are categorized and the interpolation 
lines for the immersed boundary nodes are updated. 
To avoid the use of undefined dependent variables, 

there should be no node that is converted from a solid 
node to a fluid node within one physical time step. 
The physical time step size t∆  should be restricted 
so that the interface never seeps for a whole cell 
within one physical time step. 

 
3. Free rotation of a NACA0012 in a channel 

flow 

The developed code is applied to simulate the rota-
tional motion of an NACA0012 in a channel flow. In 
this example, the foil is rigid and free to rotate around 
a fixed point due to a viscous flow. Wan and Turek 
[14] and Glowinski et al. [15, 16] reported the com-
putational results of this problem. Fig. 4 shows a 
schematic drawing for this computation. The fluid 
domain is -4 ≤ x ≤ 16 and -2 ≤ y ≤ 2 and the chord 
length of the foil is 1.009. The fixed point is located at 
(0.42,0). The density ratio of the foil to the fluid is 1.1. 
At x =-4, the uniform inflow is given and the no-slip 
condition is used at y = ± 2 and on the body boundary. 
The flow starts from the rest and both the angle θ  
and the angular velocity /d dtθ  of the foil are zero 
at t =0. The Reynolds number based on the chord 
length and the inflow velocity is 101. 

The motion of the foil is decided based on the 
equation of the motion: 

 
2

2o o
dI M
dt
θ =   (7) 

 
where oM  is the torque acting on the foil due to the 
viscous flow. To calculate the torque acting on the 
foil, the stress tensors are computed at neighboring 
fluid nodes of each Lagrangian control point. The 
stress tensor is extrapolated at the Lagrangian control 
point based on the distances from the neighboring 
fluid nodes to the local normal line passing the La-
grangian control point. The minimum gird spacing is  
 

at x=-4
u=1
v=0

at y=-2, u=v=0

at y=2, u=v=0

at x=16
p=1

t = 0
θ=dθ/dt=0

t > 0
Io(d

2θ/dt2) = Mo

 
 
Fig. 4. Schematic drawing of the hinged NACA0012 in a 
channel. eR =101. 
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0.005 near the foil. The artificial compressibility pa-
rameter β  is set to 10. 

In Fig. 5, the calculated time histories of the angle 
θ  and the angular velocity /d dtθ  of the foil are 
compared with those of Wan and Turek [14] and 
Glowinski [16]. The results are found to be stable 
after the foil starts to move, but the time interval to 
develop the initial motion and the direction of the 
movement vary irregularly according to tiny numeri-
cal parameter change. To compare the results without 
this irregularity, the time axis is shifted and the sign 
of the angle θ  is converted for the other computa-
tions. It can be seen that good agreement is achieved 
for the mean deflection angles, the amplitudes of the 
oscillations and the periods of the motion. All compu-
tational results predict that the foil moves more 
slowly near the maximum deflection compared with 
the sinusoidal oscillation with a mean deflection. 

In Fig. 6, the vorticity fields around the foil are 
shown at t =12, 13, 14 and 15. The angle of the foil 
reaches its local minimum between t =12 and 13 and 
increases until t =14. During this time interval, the 
fluids which pass the leading edge move upward. 
This upward motion severs the shear flow which 
passed the trailing edge and generates an isolated 
vorticity of clockwise rotation. 

In Fig. 7, the contours of the velocity magnitude 
and pressure are shown near the trailing edge. The 
velocity varies continuously up to the body surface 
according to the velocity gradient in the boundary 
layer of the upper surface. The hybrid Carte-
sian/immersed boundary method based on the hybrid 
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Fig. 5. Time histories of the angle and angular velocity of the 
hinged NACA0012 in a channel. Wan and Turek [14], 

't = t +1.5; Glowinski et al. [16], ''t = t +0.9. 
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Fig. 6. Time evolution of the vorticity fields around the 
hinged NACA0012 in a channel. -20 ≤ ω ≤ 20, ω∆ =1. 
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Fig. 7. Velocity magnitude and pressure contours near a 
trailing edge of the hinged NACA0012 in a channel at t =15. 
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staggered/non-staggered grid can resolve the pressure 
field smoothly near a sharp moving boundary without 
additional treatment [13]. The only presupposition for 
the computed flow field is that the reconstructed ve-
locity vectors at the immersed boundary nodes are 
accurate. It implies that the grid should be fine 
enough to resolve the linear variation of the velocity 
along the local normal line near the body boundary. 

 
4. Fluid-structure interaction of a moving fle-

xible foil 

In this section, the fluid-structure interaction of a 
moving flexible foil is simulated where the foil un-
dergoes large amplitude dynamic deformation due to 
the fluid loading. Fig. 8 shows a schematic drawing 
of this example. The foil is a NACA0012 section and 
it oscillates in a fluid at rest. It is assumed that the foil 
is flexible from 0.2 chord to the trailing edge and the 
elastic deformation of the foil can be modeled based 
on the classical thin-plate mechanics [17, 18]. 

 
2 4

2 4s s s sb d B q
tt

η η ηρ
ξ

∂ ∂ ∂+ + = −∇
∂∂ ∂

  (8) 

 
where η ( ξ , t ), sρ , sb , sd , sB  and q∇ ( ξ , t ) 
are, respectively, deformation, density of plate, thick-
ness of plate, structural damping, flexural rigidity of 
plate and fluid loading distribution. In this study, the 
structural damping is ignored so that sd =0. The Eq. 
(8) can be non-dimensionalized based on the chord 
length of the foil L , the density of fluid ρ  and the 
characteristic velocity U . 
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Fig. 8. Schematic drawing of the moving flexible foil. 

eR =75. 

The boundary conditions for a clamped end and a 
free end are given as follows. 

 

0ηη
ξ
∂= =
∂

  at  ξ =0.2 (11) 

2 3

2 3 0η η
ξ ξ
∂ ∂= =
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  at  ξ =1 (12) 

 
To calculate the distribution of the plate deforma-

tion, the mean chord line is discretized. For every 
plate segment, the Lagrangian control points are se-
lected to integrate the fluid loading acting on the 
given plate segment. Based on the estimated distribu-
tion of the fluid loading jq∇ , the Eq. (9) is solved by 
using the finite difference method. 
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Once the deformation of the mean chord line is 

computed at the new physical time step, the velocity 
distribution due to the deformation is estimated based 
on the time variation of the deformation. To provide 
the boundary conditions for the flow solver at the new 
physical time step, the position and velocity vectors at 
the Lagrangian control points are updated. 

The selected physical parameters of this example 
are similar to those used by Eldredge [19] and Wang 
et al. [20] in order to simulate the insect flight based 
on the translational and rotational motion of the rigid 
elliptic wing. The rigid part of the foil undergoes the 
prescribed sinusoidal translational motion as follows: 

 
1( ) cos(2 )
2 oX t A ftπ=  (14) 

 
where the translational amplitude oA  is 2.8. The 
frequency f  is given as 1/( oAπ ) so that the maxi-
mum translational velocity is one. The Reynolds 
number, based on the maximum translational velocity 
and the chord length of the foil, is 75. The parameters 

BC  and Cρ  related to the flexibility and inertia of 

the plate, are 0.02 and 0.1, respectively. 
To test the independency of the computed results 

on grids, three different-size grids are used. The 
minimum grid spacing for the fine, medium and  
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Fig. 9. Grid independency tests for computed time histories 
of the vertical force and the tip deflection. 

 
coarse grid is 0.005, 0.01 and 0.02, respectively. For 
the deformation calculation, the mean chord line is 
discretized by 20 elements. Even though the number 
of the structure elements was varied, there was virtu-
ally no effect on the computed results. As explained 
by Shin et al. [13], the response of the structure is 
dominated by the low-order eigenmode regardless of 
the rapid variations of the fluid loading in time and 
space due to the filtering effects of the structure itself. 

Fig. 9 shows the variation in time histories of the 
computed vertical force yF  and the tip deflection 

tipη  according to the grid spacing. While there is 
slight variation in the computed force yF , the com-
puted tip deflection tipη  does not show notable de-
viation. Usually, it is more difficult to get rid of the 
grid dependency for the non-boundary conforming 
methods because of the additional treatments near the 
body boundary. For the hybrid Cartesian/immersed 
boundary method, it is crucial that the grid spacing 
should be fine enough to resolve the assumed velocity 
profile near the immersed boundary node. However, 
in this example, it is easier to get the converged solu-
tion for the hybrid Cartesian/immersed boundary 
method because of the low Reynolds number. 

Fig. 10 shows the time histories of the tip deflec-
tion tipη  and the translational velocity. It is observed 
that the deflection reaches its local maximum some-
what prior to the moment when the rigid part moves 
with the maximum velocity. One of the reasons which 
causes this time gap is the effect of the added mass. 
During the translational velocity of the foil increases, 
the acceleration of the foil induces the decreasing 
force in the opposite direction of the movement. As 
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Fig. 10. Time histories of tip deflection and translational 
velocity of the moving flexible foil. 

 
combined effects of the velocity and acceleration of 
the foil, the fluid loading reaches its local maximum 
before the foil moves with its maximum velocity. 

Fig. 11 shows the time evolution of the vorticity 
and pressure fields around the moving flexible foil. At 
t =5.0 T , the translational velocity of the foil is zero, 
but the acceleration of the foil and the local velocity 
and acceleration due to the deformation induce the 
significant pressure modification near the foil. As the 
translational velocity increases from t =5 T  to 
t =5.2 T , the tip trails due to the fluid loading. Dur-
ing this time interval, the fluid pushed by the foil near 
the leading edge tends to move downward because 
the trailing edge evacuates due to the deformation. 
This downward flow contributes to the upward verti-
cal force as shown later. As the translational velocity 
decreases, the elastic force of the plate restores the 
original configuration. At t =5.4T , the deformation 
is significantly decreased already. At t =5.6 T , the 
foil moves in the opposite direction and the deflection 
is converted. 

In Figs. 12 and 13, the contours of vorticity and 
vertical velocity are compared for the cases of flexible 
and rigid foils. As mentioned previously, the deflec-
tion of the tip causes the downward flow and the vor-
tices shed from the foil align with the vertical center 
line for the flexible foil. For the vertical velocity, 
downward velocity dominates the central area below 
the foil. 

In Fig. 14, the time histories of the vertical and 
horizontal force acting on the moving flexible foil are 
compared with those acting on the rigid foil. For the 
rigid foil, the vertical force reflects the effects of the 
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Fig. 11. Time evolution of vorticity (left) and pressure (right) 
fields around the moving flexible foil. -20 ≤ ω ≤ 20, 
ω∆ =1; -0.5 ≤ p ≤ 2, p∆ =0.1. 
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Fig. 12. Contours of vorticity and vertical velocity around the 
moving flexible foil at t =6 T . -20 ≤ ω ≤ 20, ω∆ =1; -
1 ≤ v ≤ 0.5, v∆ =0.1. 
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Fig. 13. Contours of vorticity and vertical velocity around the 
moving rigid foil at t =6 T . -20 ≤ ω ≤ 20, ω∆ =1; -
1 ≤ v ≤ 1.3, v∆ =0.1. 
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different configurations between the leading and trail-
ing edges. As the boundary layer near the foil devel-
ops, the time average of the vertical force gets close 
to zero for the rigid foil. Although the time average of 
the vertical force decreases also for the flexible foil, a 
significant upward force persists for the flexible foil 
due to the downward motion of the fluid caused by 
the alternating tip deflection. This upward force of the 
flexible foil can be explained also based on the instan-
taneous configuration of the deforming foil. The tail 
of the foil is pushed from higher pressure side to 
lower pressure side. As a result of the instantaneous 
deformation, the lower surface of the tail contacts 
with the higher pressure fluid and the lower pressure 
pulls the tail upward. The flexibility of the foil re-
duces the magnitude of the horizontal force. The dif-
ference in the horizontal force is more apparent near 
the peak where the deflection of the foil is more sig-
nificant. 

 
5. Conclusions 

A hybrid Cartesian/immersed boundary method has 
been applied to simulate the fluid-structure interaction 
of the moving flexible foil. A new procedure has been 

suggested to identify each node as a fluid, solid or 
immersed boundary node based on edges crossing the 
boundary. The present criterion provides appropriate 
boundary conditions for the flow solver based on the 
hybrid staggered/non-staggered grid method, and it 
can handle a zero-thickness body without any diffi-
culty. 

The developed code has been applied to simulate 
the rotational motion of an NACA0012 in a channel 
of a viscous fluid, and the results have been compared 
with other computations. Good agreement has been 
achieved for the calculated period, mean deflection 
angle and amplitude of the oscillation. It has been 
also observed that the hybrid Cartesian/immersed 
boundary method provides a smooth pressure field 
near a moving sharp boundary without any additional 
treatment. 

The fluid-structure interaction of the moving flexi-
ble foil has been simulated. For this low Reynolds 
number, the grid independency has been established 
with moderate grid requirement. It has been observed 
that the response of the structure is smoother than the 
variation of the fluid loading due to the filtering ef-
fects of the structure. The moving flexible foil has 
been shown to generate larger vertical force than the 
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Fig. 14. Effects of flexibility of foil on the vertical and horizontal forces acting on the moving foils. 
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corresponding rigid foil, and the vertical force has 
contributed to the downward fluid jet due to the alter-
nating tip deflection. The downward fluid jet has been 
also supported by the comparisons of the vorticity and 
vertical velocity contours with those of the rigid foil. 
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